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Instructions :

-11- 35 (NS)
(English Version)

The question paper has five Parts namely A, B, C, D
and E. Answer all parts.

PART-A has 15 M.C.Q.’s, 5 Fill in the blanks of 1 mark
each.

For PART-A questions, only the first written answers will
be considered for awarding marks.

Use graph sheet for question on Linear Programming in
PART-E.

For questions having figure / graph, alternate questions are
given at the end of question paper in separate PART-F for
visually challenged students.

PART - A
I.  Answer all the multiple choice questions : (15x 1 =15)
1) Avrelation R in a set A is called Reflexive relation if
a) (a,a)eR forallae A
b) (a a)e R for atleast one ae A
c) (a b)eR implies (b,a)e R
d) (a,b)eR and (b,c)e R implies (a,c)e R
. 1.
2)  The principal value of sin‘(—) is
) princip NG
7T /4
a) — b —
) 2 ) 3
7T V4
c) — d =
) 2 ) 5
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3) Match List - | with List - II.

List - | List - Il
A) Domain of sin™" x ) (—75 75)

22
B) Rangeoftan™'x |ii) [0, 7]
C) Rangeofcos'x |ii) [-11]

Choose the correct answer from the options given below :
a) A-i, B-ii, C-iii b)  A-iii, B-ii, C-i

c) A-ii, B-i, C-iii d) A-iii, B-i, C-ii

4) For a2 x 2 matrix A=[a;] whose elements are given by a; =2i - j then

A is equal to

2 3 1
a) S
_1 2_ _3 2_
0) 1 1 d) 1 2
_2 2_ _2 1_

5) Let A be a nonsingular matrix of order 3 x 3, then |adj A| is equal to
a) |A b) 3|A

o) |A° d) |A?

6) If f (x)=cos2x, then f’(%) is

a) 2 by -2
c) 2 d -—+2
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7) For the given figure consider the following statements 1 and 2 :

AY

v y-‘
Statement 1 : Left hand derivative of y =f(x) at x=1is —1.

Statement 2 : The function y =f (x) is differentiable at x = 1.

Then which of the following are true?

a) Statement 1 is true, Statement 2 is false
b) Statement 1 is false, Statement 2 is true
c) Both Statements 1 and 2 are true

d) Both Statements 1 and 2 are false

8) The absolute maximum value of the function f given by f(x)=x>3,

xel[-2 2] is
a) 2 b)
c) -2 d 8

9) [e*(sinx—cosx)dx is

a) -—e*cosx b) e*cosx
c) e*sinx d) e*sin®x
d3y d2y dy
10) The degree of differential equation —3+—2+edx =0 is
dx dx
a) 1 b) 3

c) 2 d) not defined
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11)

12)

13)

14)

15)

A4- T HMOON T

The direction cosines of the vectorng—f+2lz are
a) 1 -1 2 b) 1 -1 2
V5 5’45 V6 V6’ 6
1 -1 2 -1 1 2
C Y A Y A d ] y
) 566 ) &' Ve
The angle between two vectors a and b with |a| = v/3, ‘B‘ =2 and
g-gzx/g is
7T /4
a) — b —
) 6 ) 3
7T /4
c) — d —
) ) 5
The equation of y-axis in space is
a) x=0,y=0 b) x=0,z=0
c) y=0,z=0 d y=0
1 2 .
IfP(A):E,P(B|A):§then P(ANnB)is
1 1
a) — b —
) 3 ) 2
3
c) 1 d —
) ) 5
Assertion [A] : For two events E and F if P(E):%, P(F):% and

P(E|F) =% then E and F are independent events.

Reason[R]: If E and F are two independent events then
P(FIE)=P(F)

Then which of the following are true?
a) [A]is true but [R] is false b) Both [A] and [R] are false
c) Both[A] and [R] are true d) [A]is false but [R] is true
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Fill in the blanks by choosing the appropriate answer from those given in the
bracket : (5x1=15)

i

0,2 1 =,-1,6
[ 9 ]

16) The value of cos {sec‘1(2)—sin‘1(7n is

17) If y =sin~"(cosx) then j_y:
X

13
18) The value of [1dx =
7

19) The projection of vector |+ f along the vector i — I is

20) If P(AmB):% and P(B):% then P (A’|B)=

PART -B

Answer any six of the following questions : (6x2=12)

21) Find the equation of the line through the points (1, 2) and (3, 6) using
determinants.

22) If &+\/§=\/ﬁ then show that 3—y+\/z:0.
X VX

23) A balloon which is always remains spherical has a variable radius. Find
the rate at which its volume is increasing with radius when the radius is
10 cms.

24) Find the interval in which the function given by f(x)=4x> —6x? —72x + 30
is decreasing.

25) Find [cotx-log (sinx) dx .

26) Verify that the function y =asinx+bcosx is a solution of differential

d?y

equation —-+y =0.
axz Y
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V.

~

27) If §:i+jA+I2,6:2iA—jA+3I2 and gziA—ZjAH? then find unit vector
- - -
parallel to the vector 2a—b+3c.
x—1:y—2:z—3 and x—1:y—1:z—6
-3 2k 2 3k 1 -5
perpendicular to each other, then find the value of k.

28) If the lines are

29) An urn contains 10 black and 5 white balls. Two balls are drawn from the
urn one after the other without replacement. What is the probability that
both drawn balls black?

PART-C

Answer any six of the following questions : (6 x3=18)

30) Check whether the relation R in R defined by R={(a, b):a<b?®} is
reflexive, symmetric and transitive.

31) Prove that tan™ (gj =sin™’ (ij +cos™ (Ej .
16 13 5

1
32) Express {

5
2} as the sum of a symmetric and a skew-symmetric

matrix.

33) Find dy if X :a(cost+log(tan£D and y =asint .
dx 2
34) Find the two positive numbers x and y such that x +y =60 and xy? is
maximum.

35) Evaluate jzz—xdx .

X“+3x+2

36) Find the area of triangle ABC where position vectors of A, B, C are
I —j+2k, 2)+Kk, j+3k respectively.
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37)

38)

39)

40)

41)

42)

43)

44)

45)

Derive the equation of a line in space through a given point and parallel to

a given vector b in the vector form.

In two identical boxes, box | contains 2 gold coins, while box Il contains
one gold and one silver coin. A person chooses a box at random and
takes out a coin. If the coin is of gold, what is the probability that the other
coin in the box is also a gold?

PART -D

Answer any four of the following questions : (4 x 5=20)

If A=R-{3} and B=IR-{1} and f:A—B is a function defined by

f(x)= (X — ij Is f one-one and onto? Justify your answer.
X —_

1

If A=|-4|and B=[-1 2 1], verify that (AB) = B'A’.
3

Solve the following system of linear equations by matrix method
4x+3y +22=60, 2x+4y +6z2=90, 6x+2y +3z=70.

If y =(tan"" x)? then show that (x® +1)?y, +2x(x® + 1)y, =2.

Find the integral of with respect to X’ and hence find

x? +a’

.
X —6x+13

Find the area of circle x? +y? =a? by method of integration.

Solve the differential equation cos? xj—y +y =tan x(o <Xx< %)
X
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PART -E

VI. Answer the following questions :

T

a a 4
46) Prove that [f(x)dx = [f(a—x)dx and hence evaluate [log(1+ tanx)dx.

47)

0 0 0
(6)
OR

Solve the following Linear Programming Problem graphically :
Minimise and Maximise Z =5x +10y
Subject to
X +2y <120,
X+Yy =60,
X—-2y >0,
x>0,y =20.

3 1
If A:{ 1 2}, show that A> —=5A +71 = O and hence find A™". (4)

OR
Determine the value of k if
k cos x /4
X #

f(x)= T=2x"

2
3, x=2
2

) ) T
IS continuous at X = E'

PART - F

VII. For visually challenged students only

7)

If Statement 1 : Left hand derivative of f (x)=|x| atx = 0is —1.

Statement 2 : The derivative of f (x)=|x| exists at x = 0.

Then which of the following is true?

a) Statement 1 is true, Statement 2 is false
b) Statement 1 is false, Statement 2 is true
c) Statement 1 and 2 both are true

d) Statement 1 and 2 both are false
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